
To appear in Physica Status Solidi (presented at HCIS 10, Berlin, 7/28-8/1, 1997)

Quantum Transport with Band-Structure and Schottky Contacts

R. Lake, G. Klimeck, R. C. Bowen, D. Jovanovic, D. Blanks, and M. Swaminathan
Applied R&D, Raytheon TI Systems, P.O. Box 655936, MS 134, Dallas, TX 75265

(July 25, 1997)

We describe (i) a parameterized single band model that mimics the full-band �-valley non-
parabolicity, (ii) a method for calculating the semi-classical and quantum electron charge with the
sp3s* bandstructure model, and (iii) a Schottky contact model compatible with any localized orbital
bandstructure model.
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For state-of-the-art In-based resonant tunneling diodes (RTDs) [1], transport takes place solely within the � valley
of the conduction band. However, the non-parabolicity is so large that we are forced to use a 10-band sp3s* model
[2]. Modeling transport in a single valley of a single band with a full 10-band model is ine�cient. Therefore,
we describe a parameterized 1-band tight-binding model that mimics the the full-band �-valley non-parabolicity.
To make quantitative comparisons with experimental results, a self-consistent quantum charge calculation is also
generally required. As part of that calculation, we describe our improved method for calculating the semi-classical
and quantum electron charge, Fermi-level, and Jacobian that is consistent with the full bandstructure model. Finally,
we describe our Schottky contact model that is compatible with any localized orbital bandstructure model.
To mimic the �-valley non-parabolicity with a single-band model, we parameterize as functions of kinetic energy

and transverse momentum the hopping elements and site energies of the 1-band, tight-binding Hamiltonian according
to

Ek = 2t(Ek; kt) [1� cos kza] +D(Ek; kt) (1)

where Ek is the kinetic energy, kt is the transverse (real) wavevector, kz is the longitudinal (in general complex)
wavevector, t is the hopping element, and D is the correction to the site energy. The arrays t(Ek; kt) and D(Ek; kt)
are created from the bulk �(k) dispersion relation and then used for interpolation in the transport calculation.
The arrays are created from the following algorithm. For each kt, the kinetic energy, Ek, is swept from a minimum

to maximum value. At each Ek value, kz is found from the full-band dispersion relation, �(k). Near the conduction

band edge, t(Ek; kt) is found from t(Ek; kt) = @2Ek=@k
2
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where the derivative is obtained from �(k).

At higher energies, the dispersion becomes fairly linear and we �nd t(Ek; kt) from the �rst derivative: t(Ek; kt) =

@Ek=@kz [2a sinkza]
�1
. Thus, we choose t to give the correct e�ective mass or group velocity. With t set, we then

choose D to give the correct energy, i.e. D(Ek; kt) = Ek � 2t(Ek; kt) [1� cos kza]. At each point of the actual
dispersion we are choosing a tight-binding dispersion with the correct slope or curvature. We then add a site potential
to move the tight-binding dispersion up or down to get the right energy.
For the transport calculations, we work with total energy, E, and transverse momentum, kt [3]. Foreach E, kt

and site i, we calculate the kinetic energy, Ek = E � Vi, and then interpolate from D(Ek; kt) and t(Ek; kt) to obtain
the Hamiltonian elements, Di(E; kt) and ti;i�1(E; kt). The averaged value of t is used between sites, and the site
energy at site i is given by t� + t+ + Vi +Di where t� = (ti + ti�1)=2. This reproduces the standard tight-binding
Hamiltonian for a cosine dispersion.
Generally, in modeling a semiconductor device, a contact doping is speci�ed from which the contact Fermi level

is calculated. If the contact Fermi level is not calculated using the same band-structure model as that used for the
transport calculations, the quantum-charge calculation in the device will be incorrect. We describe our method for cal-
culating the semiclassical Fermi-level, charge, and Jacobian using the bandstructure generated from the Hamiltonian.
Then we describe our quantum Jacobian for calculating the quantum charge.
We begin with the general expression for the electron density since our contact Hamiltonian contains a small

imaginary potential which creates small band-tails, alters the density of states, and thus slightly alters the Fermi-level
[3].

n =

Z 1

�1
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A(E)f(E � Ef ) (2)

where the spectral function is given by (assuming spin degeneracy)
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A(E) =
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4�3
�(E)

(E � �(k))2 + �2(E)
(3)

f(E �Ef ) is the Fermi factor, �(k) is the dispersion relation generated from the Hamiltonian,H(k), and �(E) is the
energy-dependent broadening factor from the imaginary potential [3]. For a spherically symmetric dispersion centered
at the � valley, Eqs. (2) and (3) become
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The order of integration is chosen for numerical e�ciency. f(E �Ef ) varies rapidly only around Ef and the spectral
function is peaked at E = �(k). Relatively few k points can be used and the energy points are chosen to resolve the
regions around Ef and �(k). The Newton-Raphson scheme for calculating the self-consistent electrostatic potential
requires an expression for @n=@� where � is the electrostatic potential. We use the approximation

@n=@� � q@n=@Ef (5)

which is exact in the absence of broadening.
In the absence of broadening, the spectral function is a delta function and Eq. (4) becomes

n =
1

�2
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0

dkk2f(�(k) � Ef ) (6)

Integrating by parts and substituting variables E = �(k), Eq. (6) becomes
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@E
(7)

In Eq. (7), k3(E) is the inverse of the dispersion relation �(k) raised to the third power valid if the dispersion is
single-valued within the domain of integration. We cast Eq. (6) in the form of Eq. (7) for numerical e�ciency. The
integrand is only rapidly varying around Ef , so that it is straightforward to integrate for any temperature. For the
Jacobian, we take @=@Ef of Eq. (7).
So far, we have discussed the semi-classical calculation of the Fermi-level, charge, and Jacobian using realistic

bandstructure. We must also calculate the quantum charge and a corresponding Jacobian. We have been using the
the semiclassical Jacobian for the quantum calculation [3], but it is more e�cient and even easier to compute an
approximation for the quantum Jacobian. In the equilibrium region of the leads, using approximation (5), @n=@� is
given by
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where AL;L(kt; E) is the spectral function at layer L, kt is the transverse wavevector, a is the layer thickness, and
the trace is over the cation and anion orbitals.
In the non-equilibrium region, in the absence of incoherent scattering, the expression for the electron density has two

components resulting from injection from the left and right contacts [3]. Using approximation (5) on each component,
we obtain
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where ALL;L = GR
L;1�

BL
1;1G

A
1;L and �BL is the anti-Hermitian component of the left boundary self-energy [3]. Eqs.

(8) and (9) are calculated in the same loop as the quantum charge making the calculation very e�cient. Even in
the presence of incoherent scattering, the expression for G< can be broken up into components contributed from the
left and right contacts; however, seperating the components increases the computational burden of the scattering
calculation by a factor of two.
Modeling the e�ect of Schottky contacts requires a model for the metal that is compatible with the localized

orbital bandstructure model for the semiconductor. The microscopic physics of the semiconductor - metal interface is
complex. The electrical characteristics of the standard model [4] depend on the presence of an interfacial layer of atomic
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dimensions. Rather than attempt a microscopic model of the interface, we present a model which reproduces the
essential macroscopic electric properties of the interface. The metal layer enters Poisson's equation and Schr�odinger's
equation as a boundary condition on the semiconductor region.
For Poisson's equation, the metal is an equipotential region with a Fermi-level �xed by the applied potential. The

Fermi-level of the metal is assumed to be pinned relative to the valence band of the semiconductor. The metal �xes
the electrostatic potential of the adjacent semiconductor atomic layer resulting in a Dirichlet boundary condition on
Poisson's equation. A metal also gives rise to an image potential which is added to the electrostatic potential of the
semiconductor:

V (z) =
X

i=L=R

�q2

16��jz � zij
(10)

where zL=R is the position of the left/right metal - semiconductor interface de�ned as a=2 to the left of the �rst
semiconductor layer and a=2 to the right of the last semiconductor layer, respectively.
For Schr�odinger's equation, the metal region acts as a source and sink of electrons for the semiconductor. Since we

do not know a priori into which semiconductor bands and from which semiconductor bands electrons will be sourced
or sunk, we create a boundary self-energy which allows sourcing and sinking of electrons from all semiconductor bands.
A general form of the boundary self energy is given by �t1;0�Z�

�1 where t1;0 is the block matrix coupling the device
to the left lead, � is the matrix of Bloch states, and Z is the diagonal matrix of propagation factors [3]. For a given
energy and momentum, most of the bands will be evanescent resulting in propagation factors zj = eikja for which
kj is complex with a large imaginary component. To allow electrons to be absorbed by the metal contacts from any
semiconductor band, we set the elements of the matrix of propagation factors to be zj = i� independent of energy
and momentum. Since Z is now a constant times the identity matrix, the boundary self energy becomes

�RB
1;1 = �i�t1;0 (11)

To obtain an estimate for the magnitude of �, we consider a metal Fermi level around mid-band with k = �=2a
resulting in a propagation factor eika = i which gives a value for � of 1 and a boundary self energy of �RB

1;1 = �it1;0.
In summary, we have presented several improvements and enhancements of the charge models, bandstructure

models, and contact models described in [3] which increase the comprehensiveness and numerical e�ciency of our
approach.
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